Question 16_2024

▼ Figure 10.2 Energy flow and chemical recycling in

ecosystems. Energy flows into an ecosystem as sunlight and ultimately leaves as heat, while the chemical elements essential to life are recycled.

focomotive

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ H_3C & CH_3 \\ \hline \\ CH_3 \end{array}$$

2,3-Dimethylpentane formula C₇H₁₆

2-Hexanol formula $C_6H_{14}O_1$

$$H_3C$$

1,2-Dimethylcyclobutane formula C₆H₁₂

$$H_3C$$
 CH_3 H_3C CH_3

2,3-Dimethyl-2-butene

formula C_6H_{12}

focomotive

Question 42_2024

Class	Functional group	Name of functional group	Suffix in IUPAC name	Example of compound	General formula
alkane			-ane	C ₂ H ₆ , ethane	C _n H _{2n+2}
alkene	c=c/	alkenyl	-ene	H ₂ C=CH ₂ , ethene	C _n H _{2n}
alkyne	-c≡c-	alkynyl	-yne	HC==CH, ethyne	C _n H _{2n-2}
alcohol	—ОН	hydroxyl	-anol	C ₂ H ₅ OH, ethanol	C _n H _{2n+1} OH
ether	R—O—R′	ether	-oxyalkane	H ₃ C—O—C ₂ H ₅ , methoxyethane	R—O—R′
aldehyde	-c/h	aldehyde (carbonyl)	-anal	C ₂ H ₅ CHO, propanal	R—CHO
ketone	R C=0	carbonyl	-anone	CH ₃ COCH ₃ , propanone	R—CO—R′
carboxylic acid	-с 0-н	carboxyl	-anoic acid	C ₂ H ₅ COOH, propanoic acid	C _n H _{2n+1} COOH
ester*	-c 0	ester	-anoate	C ₂ H ₅ COOCH ₃ , methyl propanoate	R—COO—R'
amide	-c_N H	carboxyamide	-anamide	C ₂ H ₅ CONH ₂ , propanamide	
amine	-NH ₂	amine	-anamine	C ₂ H ₅ NH ₂ , ethanamine	
nitrile	-c=N	nitrile	-anenitrile	C ₂ H ₅ CN, propanenitrile	
arene	C ₆ H ₅ .	phenyl	-benzene	C ₆ H ₅ CH ₃ , methyl benzene	

Locomotive